如何提高RTK在铁路定测中的精度

【摘要】RTK技术作为一种先进的测量手段,极大地改变了传统的测量模式,提高了铁路定测作业效率,节约了大量的人力物力,为测量工作带来了巨大变革。

本文将对如何提高RTK在铁路定测中的精度做相关研究。

【关键词】RTK 铁路定测 精度      一、RTK测量及其精度研究概述      1.RTK测量   RTK(Real Time Kinematics)是一种基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度

在RTK作业模式下,基准站通过无线电数据链将其观测值和测站坐标信息一起传送给流动站

流动站不仅接收来自基准站的载波相位信息,还要接收来自于GPS卫星的载波相位信息,并组成相位差分观测进行实时定位。

载波相位差分GPS分为两类:一类是基准站将载波相位修正量发送给用户站,以改正其载波相位,然后求解坐标;另一类是将基准站采集的载波相位发送给用户进行求差,解算坐标

前者为准RTK技术,后者为真正的RTK技术。

为取得高精度的实时动态坐标,RTK仪器现在一般采用载波相位差分测量

进行载波相位差分测量的关键是要求取整周模糊度。

2.RTK测量精度   RTK作业也有其自身的局限性,例如其在测量过程中要求基准站与流动站共同观测五颗以上GPS卫星,因此容易受到测站周围地形地物的影响,另外地物反射造成的多路径效应也是影响RTK测量精度的一个重要因素。

RTK基准站的差分数据是通过无线电台发射的数据链传送的,因此对无线电造成干扰的各种因素都会对RTK作业造成影响。

由于这些因素的影响,降低了RTK的测量精度,目前测绘工作者对于这些影响因素的研究已经进行得很深入,也提出了一些解决办法。

同时还对各种精度损失的原因进行了分析,建立了数学模型予以消除或减弱。

但对测量作业方式造成的精度损失的讨论却很少。

RTK仪器的标称精度都采用a+b×D的表示方式表述,其中a为固定误差,一般以mm为单位;b为比例误差,以ppm(即10—6)为单位。

D为基准站到流动站之间的距离。

由RTK仪器的精度标称方式我们可以看出,利用RTK测量时得到的点位误差随流动站基准站距离的增加而增大。

从RTK在工程测量中的应用情况来看,使用RTK进行两点校正后进行点位的测量与放样是一种常见的作业方式,研究在这种作业方式中测量点位误差变化情况以及如何估计RTK的测量精度对于实际工作具有指导意义。

RTK测量得到的三维坐标中,高程为大地高,而我国使用正常高高程系统作为工程测量的依据,因此测绘工作中并不使用大地高,造成了数据的浪费。

为了能够有效地利用大地高数据,研究区域范围内大地高与水准高程的转化问题具有实际意义。

二、RTK测量特性分析      GPS生产商在RTK出厂时都会标明其测量所能达到的精度水平,即以“a+b×D”的形式给出RTK仪器在测量过程中所能达到的精度水平。

实际工作中,RTK流动站测量结果往往不稳定,以Trimble R8为例表现为在20mm范围内变化。

进行地形测量或dm级的定位测量中,可不考虑此影响,但若要提高测量精度进行mm级的定位时,则必须考虑RTK测量结果达到最优所需的条件。

为研究RTK测量结果达到稳定与时间的关系,对RTK测量的三维坐标随时间的变化情况进行了实验。

首先,选取接收GPS卫星信号好的开阔场地架设基准站。

然后在其附近架设流动站,要保持由基准站与流动站之间电台信号通讯良好,设置好采样间隔,进行连续采样。

综合相关结论可以看出,RTK测量坐标具有明显的偶然误差特性。

在增加测量时间后可以提高精度水平,采样时间逐渐增加后观测结果的平均值趋于稳定。

可以利用增加观测时间并取均值的办法来提高测量精度

1 次访问