脊柱外科与工程力学

【关键词】 脊柱/外科学;人体工程;力学;临床应用。

骨骼最基本的功能就是传递力学载荷,发挥支撑及运动功能. 脊柱是人体的中轴骨,是人体的脊梁,是一个具有多个复杂关节连接的系统,其功能发挥依赖于完整的骨性结构和正常的负重力线. 所以,任何创伤、退变、炎症、肿瘤及畸形等疾病所引起的脊柱骨质结构破坏或力线异常,都将会导致其正常生理功能丧失,从而产生相应的临床症状. 脊柱外科手术最根本的目的就是消除病因,重建脊柱稳定和恢复脊柱生理曲度. 随着脊柱重建理念的更新及内固定器械的不断改进,越来越多的工程力学原理技术也被应用于脊柱外科,用以解决脊柱骨性结构破坏或力学异常所导致脊柱不稳定等方面的问题[1—3]. 因此,脊柱外科工程力学的结合越来越紧密. 脊柱外科的核心手术技术包括减压、固定融合三个方面. 每一个过程中都包含着大量的工程力学原理,与脊柱的稳定重建密切相关,尤其在脊柱固定脊柱融合椎体强化方面,借鉴了大量的工程学原理,目前已经发展到一个比较成熟的阶段,而脊柱的稳定重建离不开对构成脊柱椎体椎间盘和小关节突等结构的再处理.

1椎弓螺钉固定技术—杠杆原理

1.1椎弓螺钉固定技术根据“三柱”理论,脊柱可以分为前、中、后三柱,在脊柱的运动过程中,每一柱都承担相应的应力. 由于椎弓螺钉能够从椎体后方,穿过椎弓根,直达椎体前方,将椎体的前、中、后三柱贯穿固定,获得立体三维空间的稳定,因此,椎弓螺钉技术较椎板钩、前路钢板等其它固定方式有更强的力学稳定性. 椎弓螺钉与金属棒及横向连接器的组合,其力学原理类似于建筑工程学中脚手架固定,它可以通过对螺钉施加不同方向的载荷而获得对椎体间撑开、加压及旋转等功能.

1.2椎弓螺钉固定技术的临床应用椎弓螺钉技术已经成为脊柱手术中最常用、最重要、最核心的技术,在稳定重建中具有不可缺少、不可替代的作用,是脊柱外科领域划时代的技术. 目前,每年有近20万例脊柱疾病患者在手术中需要使用椎弓螺钉技术螺钉年使用量近百万根,并且以每年30%的速度增加. 椎弓螺钉技术力学优点体现最为突出并在临床上大量应用的就是在椎体滑脱复位和脊柱侧弯矫正的过程中. 治疗方法是通过手术复位,重建脊柱生物力线,恢复正常生理曲度. 手术方案是采用两组椎弓螺钉或三组椎弓螺钉进行复位. 表面上,两种方法都是通过螺钉提拉作用,完成椎体复位,但实质上,其应用的工程力学原理各有不同. 两组螺钉固定原理为悬臂梁结构,它是以一个支点对另外一个支点进行提拉,在工程学中最典型的应用是单臂起重机的工作原理;三组螺钉固定原理则是工字梁结构,它是通过两个支点对位于中央的力点进行提拉,工作原理与龙门吊车极为类似. 因此,在椎体严重的滑脱复位过程中,三组螺钉固定方法疗效优于两组螺钉固定方法的力学原理即在于此[1—2].

除了提拉复位作用以外,椎弓螺钉还可以完成加压、撑开、去旋转等功能,这在脊柱侧弯的矫形过程中极为重要. 脊柱侧弯在力学上主要表现为承载力线改变,同时存在矢状面、冠状面和水平面的力学平衡丧失,是一个三维立体畸形. 因此在畸形矫正过程中,需要同时应用加压、撑开、去旋转等方法,恢复脊柱力线,纠正力学失衡. 在现有的种类繁多的脊柱固定器械中,仅有椎弓螺钉能够提供这种三维空间矫正性能,因此,椎弓螺钉技术已经成为脊柱侧弯畸形矫正中不可缺少的技术[3—4].

1.3椎弓螺钉固定技术存在问题在临床工作中,由于骨质疏松常引起椎弓螺钉固定能力下降,螺钉松动脱出,进而导致手术失败. 随着脊柱固定手术的广泛开展,多种原因导致的术后翻修病例也越来越多. 如何处理翻修时椎弓螺钉固定强度下降的问题,也成为困扰脊柱外科医师的棘手问题. 因此,如何解决因脊柱骨质条件不佳和手术操作失误所导致的椎弓根钉固定强度下降,已成为脊柱固定研究领域的当务之急. 椎弓螺钉固定的关键取决于能否得足够的骨螺钉界面把持力,而且,这种把持力要持续到椎体间达到坚固的骨性融合为止. 影响螺钉固定稳定的因素不外乎两个,一个是螺钉本身,另一个是椎体. 在螺钉方面,影响因素包括螺钉外形、直径、长度以及螺钉的置入方向、位置等;在椎体方面,影响因素则包括骨质密度、骨质强度等,如骨质疏松. 任何引起椎体力学强度下降的病因均会导致拧入其中的螺钉把持力下降. 因而,螺钉固定稳定的核心因素就是钉道骨质螺钉螺纹的界面情况.

1.4膨胀式椎弓螺钉的研发设计及临床应用工程学专家提出的方法是使用膨胀螺钉,同时强化处理墙面,从矛盾的双方面着手,解决螺钉松动的问题. 由此,我们也考虑能否将此理念用于解决脊柱固定不稳的难题. 通过对椎弓螺钉固定的关键因素进行了细致分析,西京医院骨科在国内外率先提出椎弓螺钉稳定应着眼于螺钉早期机械性稳定,远期生物性稳定的原则,并研发出国内首个膨胀式椎弓螺钉系列产品. 大量的实验研究证明,膨胀式椎弓螺钉通过膨胀加压的作用,使螺钉周围骨质致密化,提高了螺钉的初始固定强度. 3 mo后,骨质长入膨胀螺钉的膨胀间隙内,达到了“钉中有骨,骨中有钉”的远期稳定效果,很好地解决了椎体骨质疏松所导致的内固定不稳或不能固定的难题. 从2006年8月开始临床使用膨胀式椎弓螺钉治疗植钉条件不佳的患者300余例,结果螺钉植入体内后无松动、断裂迹象,螺钉—骨界面密合性好,疗效满意.

2椎体融合与非融合技术—张力带原理与万向轴头结构。

正常椎间盘承受抗压、弯曲、剪切三维空间载荷. 当椎间盘发生退变后,蠕变率与初始松弛率增加, 达到平衡所需时间缩短和平衡时的载荷减小,椎间盘缓冲和传递载荷的功能相应减弱,进一步加重椎间盘退变、突出,压迫神经产生症状. 手术的目的就是将退变椎间盘切除,解除脊髓、神经根受到的压迫. 术后重建椎间隙高度、恢复脊柱生理曲度的技术主要可以分为椎体融合技术与非融合技术.

2.1椎体融合技术椎间融合器传统的椎体融合技术是采用自体或异体骨块,将其嵌入摘除椎间盘后的椎体间隙,从而获得椎体融合. 其缺点在于增加了手术创伤和交叉感染的风险. 随着工业技术及材料学的发展,越来越多的脊柱外科医师在考虑,能否寻求一种能够替代自体骨或异体骨的材料. 20世纪70年代中期至80年代初期, 一种中空、带孔的金属圆柱体开始用于治疗赛马的颈椎病. 该内置物可产生一种支撑作用,维持了椎间隙的高度,接受该方法治疗后的马颈椎活动基本正常, 因而美国马外科中心将本术式定为马颈椎稳定的标准手术. 随后,许多学者考虑能否将这项技术应用于人类脊柱疾病的治疗,并对其进行了外形、材料等物理特性的改进,最后产生了目前的适用于人体的椎体融合器. 椎体融合技术主要采用“牵张压缩”张力带效应和椎体间界面内固定原理. 脊柱椎体融合器置入椎间隙时可牵张残余的纤维环及周围软组织, 又可以对收缩的反作用力产生压缩作用加固融合器, 且融合器的固有螺纹与上下位椎体紧密嵌插, 如此形成一个自成一体的自动加压固定系统. 脊柱椎体融合技术特点在于完美地解决了脊柱手术节段所需要的早期制动和后期的骨性融合这一基本要求. 早期是通过嵌入椎节螺纹的抗剪力效应和上下两端拱石状结构的抗旋转作用, 而后期则由于中空内腔充满碎骨粒, 再通过周壁上空隙内外沟通, 而逐渐获得骨性融合,维持脊柱前中后三柱良好的稳定性. 早期临床上应用的椎体融合器是不可吸收性的,多为金属和多聚碳纤维两种材料,融合后期产生应力遮挡, 在一定程度上影响骨融合后的强度等不良反应, 因此, 目前国内外致力于各种生物型椎间融合器的研究. 它具有更好的刚度和弹性系数, 对影像学评估干扰更小等诸多优势. 已有研究表明,在屈伸、轴向旋转及侧屈的生物力学特性及节段稳定性方面,可吸收性椎间融合器的临床效果等于或优于非可吸收性椎间融合器[1,3].

2.2椎体间非融合技术人工椎间盘在医学上,只有生理性的重建解剖结构才是最为合理的. 尽管采用椎体融合技术治疗椎间盘源性疾病获得良好的手术效果,但由于椎体融合技术改变了脊柱的生物力学特性,使原本能够活动的脊柱节段丧失运动功能,因而导致其周围组织和邻近椎间盘应力增加,加重了邻近椎间盘的退化与病变. 近年来,国内外学者致力于探求合适的人工假体替代退变椎间盘的全部或其中一部分,以求恢复椎间盘的解剖和功能,随之诞生出人工椎间盘置换技术. 替换退变的全部椎间盘者,称为人工全椎间盘置换;只替换退变的髓核者,称作人工髓核置换[2—4].

4 次访问